By Topic

Head Pose Estimation and Augmented Reality Tracking: An Integrated System and Evaluation for Monitoring Driver Awareness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Erik Murphy-Chutorian ; Google Inc., Mountain View, CA, USA ; Mohan Manubhai Trivedi

Driver distraction and inattention are prominent causes of automotive collisions. To enable driver-assistance systems to address these problems, we require new sensing approaches to infer a driver's focus of attention. In this paper, we present a new procedure for static head-pose estimation and a new algorithm for visual 3-D tracking. They are integrated into the novel real-time (30 fps) system for measuring the position and orientation of a driver's head. This system consists of three interconnected modules that detect the driver's head, provide initial estimates of the head's pose, and continuously track its position and orientation in six degrees of freedom. The head-detection module consists of an array of Haar-wavelet Adaboost cascades. The initial pose estimation module employs localized gradient orientation (LGO) histograms as input to support vector regressors (SVRs). The tracking module provides a fine estimate of the 3-D motion of the head using a new appearance-based particle filter for 3-D model tracking in an augmented reality environment. We describe our implementation that utilizes OpenGL-optimized graphics hardware to efficiently compute particle samples in real time. To demonstrate the suitability of this system for real driving situations, we provide a comprehensive evaluation with drivers of varying ages, race, and sex spanning daytime and nighttime conditions. To quantitatively measure the accuracy of system, we compare its estimation results to a marker-based cinematic motion-capture system installed in the automotive testbed.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:11 ,  Issue: 2 )