By Topic

An Adaptive Computational Model for Salient Object Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Zhang ; Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada ; Wu, Q.M.J. ; Guanghui Wang ; HaiBing Yin

Salient object detection is a basic technique for many computer vision applications. In this paper, we propose an adaptive computational model to detect the salient object in color images. Firstly, three human observation behaviors and scalable subtractive clustering techniques are used to construct attention Gaussian mixture model (AGMM) and background Gaussian mixture model (BGMM). Secondly, the Bayesian framework is employed to classify each pixel into salient object or background object. Thirdly, expectation-maximization (EM) algorithm is utilized to update the parameters of AGMM, BGMM, and Bayesian framework based on the detection results. Finally, the classification and update procedures are repeated until the detection results evolve to a steady state. Experiments on a variety of images demonstrate the robustness of the proposed method. Extensive quantitative evaluations and comparisons demonstrate that the proposed method significantly outperforms state-of-the-art methods.

Published in:

Multimedia, IEEE Transactions on  (Volume:12 ,  Issue: 4 )