By Topic

On the stability-robustness of linear dynamical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
C. D. Johnson ; ECE Dept., Univ. of Alabama in Huntsville Huntsville, Alabama; 35899

The ability of a dynamical system to remain stable in the face of perturbations in values of the system's parameters/coefficients is an important safety-attribute in control-system analysis and design and is referred-to as "stability-robustness". The most fundamental question in the study of stability-robustness is to identify, or safely-approximate, the "extent/range" of parameter-variations for which the system remains stable, in some defined sense. In this paper we consider the class of "constant" linear dynamical systems and show that in some, seemingly-normal sub-cases, an asymptotically-stable, constant linear dynamical system can exhibit rather unusual non-robust stability features. An Example is presented and the unique structural-property characterizing the non-robust stability behavior is identified.

Published in:

2010 42nd Southeastern Symposium on System Theory (SSST)

Date of Conference:

7-9 March 2010