By Topic

Greedy by Chance - Stochastic Greedy Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kodaganallur, V. ; Seton Hall Univ., NJ, USA ; Sen, A.K.

For many complex combinatorial optimization problems, obtaining good solutions quickly is of value either by itself or as part of an exact algorithm. Greedy algorithms to obtain such solutions are known for many problems. In this paper we present stochastic greedy algorithms which are perturbed versions of standard greedy algorithms, and report on experiments using learned and standard probability distributions conducted on knapsack problems and single machine sequencing problems. The results indicate that the approach produces solutions significantly closer to optimal than the standard greedy approach, and runs quite fast. It can thus be seen in the space of approximate algorithms as falling between the very quick greedy approaches and the relatively slower soft computing approaches like genetic algorithms and simulated annealing.

Published in:

Autonomic and Autonomous Systems (ICAS), 2010 Sixth International Conference on

Date of Conference:

7-13 March 2010