By Topic

Titanium nitride sidewall stringer process for lateral nanoelectromechanical relays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Lee, D. ; Stanford Univ., Stanford, CA, USA ; Lee, W.S. ; Provine, J. ; Lee, J.-O.
more authors

This paper reports on lateral nanoelectromechanical (NEM) relays based on variations of a two- or three-mask titanium nitride (TiN) sidewall stringer process. Electrically isolated TiN perimeter beams are fabricated from stringers formed on the inside walls of polysilicon trenches, yielding 200 nm wide TiN fins and 200 nm gaps; these dimensions are 3X smaller than the resolution limit of the optical lithography tool (600 nm) utilized. The reduction in the operating voltage is about a factor of 5 compared to 600 nm wide polysilicon beams. Simple scaling could potentially enable sub-1V operation. Five-terminal NEM relays demonstrate successful switching in both directions over 1000 DC-sweep cycles with low drain bias (100 mV).

Published in:

Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on

Date of Conference:

24-28 Jan. 2010