By Topic

WLCSP and flipchip production using electroless NI/AU plating and wafer level solder sphere transfer technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zakel, E. ; Packaging Technol., Inc., Pac Tech GmbH, Nauen, Germany

WLCSP bumps have traditionally been produced by dropping preformed solder spheres through a metal template onto silicon wafers using modified surface mount stencil printers. The squeegee blades associated with these printers have been retrofitted with a special fixture in which spheres are gravity feed down through a narrow slot. This same stencil printer is often used to apply the flux to the wafer just prior to sphere dropping. Several issues are associated with this technology that limit its widespread use in high volume and high yield applications. These limitations include: 1) there is a practical lower limit to the size of sphere that can be dropped, 2) the seal between the slotted fixturing and the wafer can fail, causing a release of all the spheres into the tool (often referred to as bursts or escapes), and 3) the yields are statistically low. One new WLCSP technology that is showing high promise toward eliminating these issues, is Wafer Level Solder Sphere Transfer (also called Gang Ball Placement). This technology uses a patterned vacuum plate to simultaneous pick up all of the preformed solder spheres, optically inspect for yield, and then transfer them over to the wafer. This paper will discuss this technology and the process parameters for producing WLCSP bumps. Throughput levels of 25 to 30 wafers per hour were measured. Yield losses of less than 10 ppm were realized for placing 300 ¿m spheres onto 200 mm wafers with ~80,000 I/Os. Similar yields have been observed for placing 60 ¿m flip chip sized spheres onto semiconductor wafers.

Published in:

Advanced Packaging Materials: Microtech, 2010. APM '10. International Symposium on

Date of Conference:

Feb. 28 2010-March 2 2010