By Topic

An Efficient Technique for Leakage Current Estimation in Nanoscaled CMOS Circuits Incorporating Self-Loading Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alodeep Sanyal ; University of Massachusetts, Amherst ; Ashesh Rastogi ; Wei Chen ; Sandip Kundu

With the scaling of CMOS technology, subthreshold, gate, and reverse biased junction band-to-band-tunneling leakage have increased dramatically. Together, they account for more than 25 percent of power consumption in the current generation of leading edge designs. Different sources of leakage can affect each other by interacting through resultant intermediate node voltages. This is called the loading effect. In this paper, we propose a pattern dependent steady-state leakage estimation technique that incorporates loading effect and accounts for all three major leakage components, namely the gate, band-to-band-tunneling, and subthreshold leakage and accounts for transistor stack effect. By observing a recursive relationship between gate leakage and loading effect, we further refine our leakage estimation technique by developing a compact leakage model that supports iteration over node voltages based on Newton-Raphson method. The proposed estimation technique based on the compact model improves performance and capacity over SPICE. We report a speedup of 18,000X over SPICE simulation on smaller circuits, where SPICE simulation is feasible. Results also show that loading effect is a significant factor in leakage and worsens with technology scaling.

Published in:

IEEE Transactions on Computers  (Volume:59 ,  Issue: 7 )