By Topic

A lens-less imaging holographic memory writer system for a programmable optically reconfigurable gate array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shinya Kubota ; Electrical and Electronic Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561, Japan ; Minoru Watanabe

Recently, optically reconfigurable gate arrays (OR-GAs) consisting of a gate array VLSI, a holographic memory, and a laser array have been developed to achieve a huge virtual gate count that is much larger than those of currently available VLSIs. Consequently, ORGAs with more than tera-gate capacity will be realized by exploiting the storage capacity of a holographic memory. However, in contrast to current field-programmable gate arrays (FPGAs), conventional ORGAs have an important shortcoming: they are not reprogrammable after fabrication because, to reprogram ORGAs, a holographic memory must be disassembled from its ORGA package and reprogrammed outside of the ORGA package using a holographic memory writer. Then it must be implemented onto the ORGA package with high precision beyond the capability of manual assembly. To remove that problem, this paper presents a new programmable optically reconfigurable gate array and its lens-less imaging holographic memory writer system. Furthermore, this paper presents discussion of the availability of this architecture and future plans based on experimental results.

Published in:

Emerging Trends in Electronic and Photonic Devices & Systems, 2009. ELECTRO '09. International Conference on

Date of Conference:

22-24 Dec. 2009