By Topic

Step-response optimisation techniques for low-power, high-load, three-stage operational amplifiers driving large capacitive loads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Marano ; Universita di Catania, Catania, Italy ; G. Palumbo ; S. Pennisi

Two simple efficient techniques to optimise the closed-loop transient response of three-stage amplifiers for large capacitive load applications are proposed and developed. The proposed approaches exploit a current comparator in the inner amplifier nodes to sense the input voltage transients and to switch on an auxiliary driving device providing slew-rate enhancement and settling time improvement without extra static power dissipation. SPECTRE simulations are carried out on a three-stage amplifier adopting a recently proposed reversed-nested Miller compensation strategy with a voltage follower and two nulling resistors, for which a novel design methodology is provided as well. Simulation results confirm the effectiveness of the two proposed techniques, showing a symmetrical step response with a significant improvement in large-signal speed performance. Both proposed solutions are suitable for any particular three-stage amplifier topology and are also independent of the adopted compensation network.

Published in:

IET Circuits, Devices & Systems  (Volume:4 ,  Issue: 2 )