By Topic

Vehicle Detection in Very High Resolution Satellite Images of City Areas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Leitloff, J. ; Inst. of Photogrammetry & Cartography, Tech. Univ. Munchen, Munich, Germany ; Hinz, S. ; Stilla, U.

Current traffic research is mostly based on data from fixed-installed sensors like induction loops, bridge sensors, and cameras. Thereby, the traffic flow on main roads can partially be acquired, while data from the major part of the entire road network are not available. Today's optical sensor systems on satellites provide large-area images with 1-m resolution and better, which can deliver complement information to traditional acquired data. In this paper, we present an approach for automatic vehicle detection from optical satellite images. Therefore, hypotheses for single vehicles are generated using adaptive boosting in combination with Haar-like features. Additionally, vehicle queues are detected using a line extraction technique since grouped vehicles are merged to either dark or bright ribbons. Utilizing robust parameter estimation, single vehicles are determined within those vehicle queues. The combination of implicit modeling and the use of a priori knowledge of typical vehicle constellation leads to an enhanced overall completeness compared to approaches which are only based on statistical classification techniques. Thus, a detection rate of over 80% is possible with very high reliability. Furthermore, an approach for movement estimation of the detected vehicle is described, which allows the distinction of moving and stationary traffic. Thus, even an estimate for vehicles' speed is possible, which gives additional information about the traffic condition at image acquisition time.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 7 )