Cart (Loading....) | Create Account
Close category search window
 

Speech Enhancement With a GSC-Like Structure Employing Eigenvector-Based Transfer Function Ratios Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Krueger, A. ; Dept. of Commun. Eng., Univ. of Paderborn, Paderborn, Germany ; Warsitz, E. ; Haeb-Umbach, R.

In this paper, we present a novel blocking matrix and fixed beamformer design for a generalized sidelobe canceler for speech enhancement in a reverberant enclosure. They are based on a new method for estimating the acoustical transfer function ratios in the presence of stationary noise. The estimation method relies on solving a generalized eigenvalue problem in each frequency bin. An adaptive eigenvector tracking utilizing the power iteration method is employed and shown to achieve a high convergence speed. Simulation results demonstrate that the proposed beamformer leads to better noise and interference reduction and reduced speech distortions compared to other blocking matrix designs from the literature.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.