Cart (Loading....) | Create Account
Close category search window
 

Impact of Satellite-Derived Precipitation on Simulated Sea-Surface Salinity in the Tropical Indian Ocean

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Momin, I.M. ; Oceanic Sci. Div., Meteorol. & Oceanogr. Group, Ahmedabad, India ; Agarwal, N. ; Sharma, R. ; Basu, S.
more authors

The impact of satellite-derived precipitation on variability of sea-surface salinity (SSS) in the tropical Indian Ocean has been studied using an ocean general-circulation model. Two different experiments have been conducted. In one of the experiments, the model has been forced by precipitation derived from National Center for Environmental Prediction (NCEP) reanalysis, while in the other one, the model has been forced by satellite-derived precipitation. The time span of the experiments is 2003-2005. The simulations have been compared with data from buoy located at 90°E and 1.5°. The comparison suggests that the simulation forced by satellite precipitation captures the high-frequency variability much better than that forced by NCEP precipitation. The reason for this lies in the fact that the regions of high-frequency variability in SSS coincide with the regions of high-frequency variability in the satellite precipitation. As far as the low-frequency part of the SSS variability is concerned, it was found that this was governed by advective process. Hence, satellite precipitation does not have significant impact on this scale of variability.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:7 ,  Issue: 4 )

Date of Publication:

Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.