By Topic

Comparison of Optimal Solutions to Real-Time Path Planning for a Mobile Vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Yang ; Dept. of Electr. & Comput. Eng., Univ. of Central Florida, Orlando, FL, USA ; Zhihua Qu ; Jing Wang ; Conrad, K.

In this paper, we present two near-optimal methods to determine the real-time collision-free path for a mobile vehicle moving in a dynamically changing environment. The proposed designs are based on the polynomial parameterization of feasible trajectories by explicitly taking into account boundary conditions, kinematic constraints, and collision-avoidance criteria. The problems of finding optimal solutions to the parameterized feasible trajectories are then formulated with respect to a near-minimal control-energy performance index and a near-shortest distance performance index, respectively. The obtained optimal solutions are analytical and suitable for practical applications which may require real-time trajectory planning and replanning. Computer simulations are provided to validate the effectiveness of the proposed near-optimal trajectory-planning methods.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:40 ,  Issue: 4 )