By Topic

Dynamic clustering of maps in autonomous agents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maio, D. ; Dipartimento di Elettronica Inf. e Sistemistica, Bologna Univ., Italy ; Maltoni, D. ; Rizzi, S.

The problem of organizing and exploiting spatial knowledge for navigation is an important issue in the field of autonomous mobile systems. In particular, partitioning the environment map into connected clusters allows for significant topological features to be captured and enables decomposition of path-planning tasks through a divide-and-conquer policy. Clustering by discovery is a procedure for identifying clusters in a map being learned by exploration as the agent moves within the environment, and yields a valid clustering of the available knowledge at each exploration step. In this work, we define a fitness measure for clustering and propose two incremental heuristic algorithms to maximize it. Both algorithms determine clusters dynamically according to a set of topological and metric criteria. The first one is aimed at locally minimizing a measure of “scattering” of the entities belonging to clusters, and partially rearranges the existing clusters at each exploration step. The second estimates the positions and dimensions of clusters according to a global map of density. The two algorithms are compared in terms of optimality, efficiency, robustness, and stability

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 11 )