Cart (Loading....) | Create Account
Close category search window
 

On the generation of skeletons from discrete Euclidean distance maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yaorong Ge ; Dept. of Radiol., Bowman Gray Sch. of Med., Winston-Salem, NC, USA ; Fitzpatrick, J.M.

The skeleton is an important representation for shape analysis. A common approach for generating discrete skeletons takes three steps: 1) computing the distance map, 2) detecting maximal disks from the distance map, and 3) linking the centers of maximal disks (CMDs) into a connected skeleton. Algorithms using approximate distance metrics are abundant and their theory has been well established. However, the resulting skeletons may be inaccurate and sensitive to rotation. In this paper, we study methods for generating skeletons based on the exact Euclidean metric. We first show that no previous algorithms identify the exact set of discrete maximal disks under the Euclidean metric. We then propose new algorithms and show that they are correct. To link CMDs into connected skeletons, we examine two prevalent approaches: connected thinning and steepest ascent. We point out that the connected thinning approach does not work properly for Euclidean distance maps. Only the steepest ascent algorithm produces skeletons that are truly medially placed. The resulting skeletons have all the desirable properties: they have the same simple connectivity as the figure, they are well-centered, they are insensitive to rotation, and they allow exact reconstruction. The effectiveness of our algorithms is demonstrated with numerous examples

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 11 )

Date of Publication:

Nov 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.