By Topic

Novel higher-order local autocorrelation-like feature extraction methodology for facial expression recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lajevardi, S.M. ; Sch. of Electr. & Comput. Eng., RMIT Univ., Melbourne, VIC, Australia ; Hussain, Z.M.

A novel feature extraction method for facial expression recognition from sequences of image frames is described and tested. The authors propose HLAC-like features (HLACLF) for feature extraction. The features are extracted using different masks from Grey-scale images for characterising facial texture. Then the most informative features are selected based on mutual information quotient (MIQ) criterion. Multiple linear discriminant analysis (LDA) classifier is adopted. The proposed system is fully automatic and including: face detection, facial detection, feature extraction, feature selection and classification. Experiments on the Cohn-Kanade database illustrate that the HLACLF is efficient for facial expression recognition compared with other feature extraction methods.

Published in:

Image Processing, IET  (Volume:4 ,  Issue: 2 )