Cart (Loading....) | Create Account
Close category search window

Silicon on Insulator Diode Temperature Sensor– A Detailed Analysis for Ultra-High Temperature Operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Santra, S. ; Dept. of Eng., Univ. of Cambridge, Cambridge, UK ; Guha, P.K. ; Ali, S.Z. ; Haneef, I.
more authors

Silicon diodes can be used for accurate temperature monitoring up to higher temperatures in a variety of sensors such as micro-machined resistive and calorimetric gas sensors, thermal flow sensors, exhausts, etc. This paper investigates the performance of a diode temperature sensor when operated at ultra high temperatures (up to 780°C ). A low leakage silicon on insulator (SOI) diode was designed and fabricated in a 1.0 ¿m CMOS (complementary metal oxide semiconductor) process. The diodes were suspended within a dielectric membrane [formed by post CMOS deep reactive ion etching (DRIE)] for efficient thermal insulation. A CMOS compatible micro-heater was integrated with the diode on the dielectric membrane for local heating. It was found that the diode forward voltage exhibited a linear dependence on temperature as long as the reverse saturation current remained below the forward driving current. We show experimentally that the maximum temperature up to which the linearity of diode's forward voltage output is maintained can be as high as 550°C . Long term continuous operation at high temperatures (400°C and 500°C ) showed good stability of the diode voltage drop. Finally, we present a detailed theoretical analysis that helps to determine the maximum operating temperature for the diode and also explains the presence of nonlinearity factors in diode voltage output at ultra high temperatures.

Published in:

Sensors Journal, IEEE  (Volume:10 ,  Issue: 5 )

Date of Publication:

May 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.