By Topic

Nd-Doped Polymer Waveguide Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jing Yang ; Integrated Opt. Micro Syst. Group, Univ. of Twente, Enschede, Netherlands ; Diemeer, M. ; Sengo, G. ; Pollnau, M.
more authors

Nd3+-complex-doped polymer channel waveguide amplifiers with various lengths and Nd3+ concentrations are fabricated by a simple procedure. Internal net gain at 840-950 nm and 1064 nm is experimentally and theoretically investigated under continuous-wave excitation at 800 nm. Internal net gain in the range 865-930 nm is observed and a peak gain of 2.8 dB at 873 nm is obtained in a 1.9-cm-long waveguide with a Nd3+ concentration of 0.6 × 1020 cm-3 at a launched pump power of 25 mW. The small-signal gain measured in a 1-cm-long sample with a Nd3+ concentration of 1.03 × 1020 cm-3 is 2.0 dB/cm and 5.7 dB/cm at 873 nm and 1064 nm, respectively. By use of a rate-equation model, the internal net gain at these two wavelengths is calculated and the macroscopic parameter of energy-transfer upconversion as a function of Nd3+ concentration is derived. Ease of fabrication, compatibility with other materials, and low cost make such rare-earth-ion-doped polymer waveguide amplifiers suitable for providing gain in many integrated optical devices.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 7 )