By Topic

GaN-Based Light-Emitting Diodes With Pillar Structures Around the Mesa Region

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Chen, P.H. ; Inst. of Electro-Opt. Sci. & Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Li Chuan Chang ; Tsai, C.H. ; Lee, Y.C.
more authors

This study presents the numerical and experimental demonstrations for the enhancement of light extraction efficiency in nitride-based light-emitting diodes (LEDs) with textured sidewall and micro-sized pillar waveguides (TSMPW) and nano-textured sidewall and nano-pillars (NTSNP) around the mesa. Using hydrothermal ZnO nanorods as the etching hard mask, the authors successfully formed vertical GaN nano-pillars on the mesa-etched regions. It was found that electrical characteristics observed from the proposed LEDs were near the same as the control samples without the pillars. Output power enhancement of LED with TSMPW was about 11% compared with conventional LEDs, and the output power enhancement of LED was greater than 45% upon replacement of TSMPW with the NTSNP structure. The light extraction efficiency enhancement factors of the LEDs with TSMPW and NTSNP structures simulated by finite-difference time-domain analysis were 16.6% and 23%, respectively.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 7 )