Cart (Loading....) | Create Account
Close category search window
 

Minimizing Heat Generation in Solid-State Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bowman, S.R. ; Adv. Laser Concepts, Naval Res. Lab., Washington, DC, USA ; O'Connor, S.P. ; Biswal, S. ; Condon, N.J.
more authors

Novel high-power ytterbium YAG lasers are described. These lasers incorporate the principle of anti-Stokes fluorescence cooling to reduce or eliminate detrimental heating. Lasers with net heating and net cooling are demonstrated. By balancing the spontaneous and stimulated emission, we have reduced the net thermal loading to below 0.01% of the laser's average output power. Design, testing, and analysis are reported for lasers up to 500 W average power and pulsed operation up to 30 s. Issues and limitations of this approach are discussed.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 7 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.