By Topic

Hyperpolarization of Human Mesenchymal Stem Cells in Response to Magnetic Force

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kirkham, G.R. ; Inst. of Sci. & Technol. in Med., Univ. of Keele, Stoke-on-Trent, UK ; Elliot, K.J. ; Keramane, A. ; Salter, D.M.
more authors

Magnetic particle tagging techniques are currently being applied to tissue engineering applications such as controlled differentiation of mesenchymal stem cells (MSC). In order to define key mechanotransducers underpinning these applications, the electrophysiological responses of human MSCs (hMSC) have been investigated. Ferromagnetic microparticles were coated with L-arginyl-glycyl-L-aspartic acid in order to target the application of dynamic force (6 pN) directly to cell surface integrins. Human MSCs demonstrated cell membrane hyperpolarization responses after the application of force, mediated by BK channels and intracellular calcium release.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:9 ,  Issue: 1 )