By Topic

Recognition of Affect Based on Gait Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michelle Karg ; Institute of Automatic Control Engineering, Technische Universität München, Munich, Germany ; Kolja Kuhnlenz ; Martin Buss

To provide a means for recognition of affect from a distance, this paper analyzes the capability of gait to reveal a person's affective state. We address interindividual versus person-dependent recognition, recognition based on discrete affective states versus recognition based on affective dimensions, and efficient feature extraction with respect to affect. Principal component analysis (PCA), kernel PCA, linear discriminant analysis, and general discriminant analysis are compared to either reduce temporal information in gait or extract relevant features for classification. Although expression of affect in gait is covered by the primary task of locomotion, person-dependent recognition of motion capture data reaches 95% accuracy based on the observation of a single stride. In particular, different levels of arousal and dominance are suitable for being recognized in gait. It is concluded that gait can be used as an additional modality for the recognition of affect. Application scenarios include monitoring in high-security areas, human-robot interaction, and cognitive home environments.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:40 ,  Issue: 4 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal