System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

A Low-Power and Portable Spread Spectrum Clock Generator for SoC Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Duo Sheng ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Ching-Che Chung ; Chen-Yi Lee

In this paper, a novel portable and all-digital spread spectrum clock generator (ADSSCG) suitable for system-on-chip (SoC) applications with low-power consumption is presented. The proposed ADSSCG can provide flexible spreading ratios by the proposed rescheduling division triangular modulation (RDTM). Thus it can provide different EMI attenuation performance for various system applications. Furthermore, the proposed ADSSCG employs a low-power digitally controlled oscillator (DCO) to save overall power consumption significantly. Measurement results show that power consumption of the proposed ADSSCG is 1.2 mW (@54 MHz), and it provides 9.5 dB EMI reductions with 1% spreading ratio. Besides, the proposed ADSSCG has very small chip area as compared with conventional SSCGs which often required large on-chip loop filter capacitors. In addition, the proposed ADSSCG is implemented only with standard cells, making it easily portable to different processes and very suitable for SoC applications.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 6 )