Cart (Loading....) | Create Account
Close category search window
 

Statistical Modeling and Simulation of Threshold Variation Under Random Dopant Fluctuations and Line-Edge Roughness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yun Ye ; Dept. of Electr. Engi neering, Arizona State Univ., Tempe, AZ, USA ; Liu, T. ; Min Chen ; Nassif, S.
more authors

The threshold voltage (Vth) of a nanoscale transistor is severely affected by random dopant fluctuations and line-edge roughness. The analysis of these effects usually requires atomistic simulations which are too expensive in computation for statistical design. In this work, we develop an efficient SPICE simulation method and statistical variation model that accurately predict threshold variation as a function of dopant fluctuations and gate length change caused by lithography and the etching process. By understanding the physical principles of atomistic simulations, we: 1) identify the appropriate method to divide a nonuniform gate into slices in order to map those fluctuations into the device model; 2) extract the variation of Vth from the strong-inversion region instead of the leakage current, benefiting from the linearity of the saturation current with respect to Vth ; 3) propose a compact model of Vth variation that is scalable with gate size and the amount of dopant and gate length fluctuations; and 4) investigate the interaction with non-rectangular gate (NRG) and reverse narrow width effect (RNWE). The proposed SPICE simulation method is validated with atomistic simulation results. Given the post-lithography gate geometry, this approach correctly models the variation of device output current in all operating regions. Based on the new results, we further project the amount of Vth variation at advanced technology nodes, helping shed light on the challenges of future robust circuit design.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 6 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.