By Topic

Evaluation of Weakly Singular Integrals Via Generalized Cartesian Product Rules Based on the Double Exponential Formula

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Polimeridis, A.G. ; Lab. of Electromagn. & Acoust. (LEMA), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Mosig, J.R.

Various weakly singular integrals over triangular and quadrangular domains, arising in the mixed potential integral equation formulations, are computed with the help of novel generalized Cartesian product rules. The proposed integration schemes utilize the so-called double exponential quadrature rule, originally developed for the integration of functions with singularities at the endpoints of the associated integration interval. The final formulas can easily be incorporated in the context of singularity subtraction, singularity cancellation and fully-numerical methods, often used for the evaluation of multidimensional singular integrals. The performed numerical experiments clearly reveal the superior overall performance of the proposed method over the existing numerical integration methods.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 6 )