By Topic

Determining the Electronic Properties of Individual Nanointerfaces by Combining Intermittent AFM Imaging and Contact Spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kraya, R.A. ; Dept. of Mater. Sci. & Eng., Univ. of Pennsylvania, Philadelphia, PA, USA ; Bonnell, Dawn A.

A method to determine the electronic properties at nanointerfaces or of nanostructures by utilizing intermittent contact atomic force microscopy and contact spectroscopy in one system is developed. By combining these two methods, the integrity of the interface or structure is maintained during imaging, while the extraction of the electronic information is obtained with contact spectroscopy. This method is especially vital for understanding interfaces between metal nanoparticles and substrates, where the nanoparticles are not tethered to the surface and can be combined with new and evolving techniques of thermal drift compensation to allow for a larger range of experiments on nanointerfaces and nanostructures in ambient environments. An experimental probe for quantifying the properties of individual interfaces with diameters in the range of 20 to 100 nm is developed, which is based on scanning probe microscopy.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:9 ,  Issue: 6 )