Cart (Loading....) | Create Account
Close category search window

Electrically Small Magnetic Dipole Antennas With Quality Factors Approaching the Chu Lower Bound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim, O.S. ; Dept. of Electr. Eng., Tech. Univ. of Denmark, Lyngby, Denmark ; Breinbjerg, O. ; Yaghjian, A.D.

We investigate the quality factor Q for electrically small current distributions and practical antenna designs radiating the TE10 magnetic dipole field. The current distributions and the antenna designs employ electric currents on a spherical surface enclosing a magneto-dielectric material that serves to reduce the internal stored energy. Closed-form expressions for the internal and external stored energies as well as for the quality factor Q are derived. The influence of the sphere radius and the material permeability and permittivity on the quality factor Q is determined and verified numerically. It is found that for a given antenna size and permittivity there is an optimum permeability that ensures the lowest possible Q, and this optimum permeability is inversely proportional to the square of the antenna electrical radius. When the relative permittivity is equal to 1, the optimum permeability yields the quality factor Q that constitutes the lower bound for a magnetic dipole antenna with a magneto-dielectric core. Furthermore, the smaller the antenna the closer its quality factor Q can approach the Chu lower bound. Simulated results for the TE10-mode multiarm spherical helix antenna with a magnetic core reach a Q that is 1.24 times the Chu lower bound for an electrical radius of 0.192.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 6 )

Date of Publication:

June 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.