By Topic

Detection and Restoration of Defective Lines in the SPOT 4 SWIR Band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hyung-Sup Jung ; Dept. of Geoinformatics, Univ. of Seoul, Seoul, South Korea ; Joong-Sun Won ; Myung-Ho Kang ; Yong-Woong Lee

This paper presents the categorization and restoration of defective lines developed in pushbroom images. About 100 of the 3000 SPOT 4 SWIR detectors malfunction, which degrades image quality. Conventional methods have difficulties in effectively detecting and restoring defective lines, because they ignore the heterogeneity of the ground surface and the presence of sporadically unstable detectors with gain and offset that vary during a scan. While all defective lines have previously been considered as a single type, here they are categorized into three types according to the variation pattern in the scanning direction: constant defective lines, irregular defective lines, and irrecoverable defective lines. The detection procedure utilizes summed data and standard deviation data that consist of abnormal peaks originating from defective lines and a slowly varying baseline reflecting the surface characteristics within the image. The defective lines are detected by finding abnormal peaks, and classified and restored by using either a moment-matching method or interpolation, depending upon their types. Three SPOT 4 images were used to test and evaluate the performance of the proposed method. From the test results, the constant defective line was the most common type, comprising about 60%, while the irregular defective lines caused serious image degradation because of the difficulty of detecting and classifying them. Commission and omission errors were less than 10% and detection accuracy was higher than 90%. The analysis of signal-to-noise ratio (SNR) showed that the low SNR created by the defective lines was effectively removed. Our method gave a significant improvement of the detection and restoration capability.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 8 )