Cart (Loading....) | Create Account
Close category search window
 

Exploiting Transitivity of Correlation for Fast Template Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mahmood, A. ; Coll. of Inf. Technol., Punjab Univ., Lahore, Pakistan ; Khan, S.

Elimination Algorithms are often used in template matching to provide a significant speed-up by skipping portions of the computation while guaranteeing the same best-match location as exhaustive search. In this work, we develop elimination algorithms for correlation-based match measures by exploiting the transitivity of correlation. We show that transitive bounds can result in a high computational speed-up if strong autocorrelation is present in the dataset. Generally strong intrareference local autocorrelation is found in natural images, strong inter-reference autocorrelation is found if objects are to be tracked across consecutive video frames and strong intertemplate autocorrelation is found if consecutive video frames are to be matched with a reference image. For each of these cases, the transitive bounds can be adapted to result in an efficient elimination algorithm. The proposed elimination algorithms are exact, that is, they guarantee to yield the same peak location as exhaustive search over the entire solution space. While the speed-up obtained is data dependent, we show empirical results of up to an order of magnitude faster computation as compared to the currently used efficient algorithms on a variety of datasets.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.