By Topic

An Interval Type-2 Fuzzy-Neural Network With Support-Vector Regression for Noisy Regression Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chia-Feng Juang ; Dept. of Electr. Eng., Nat. Chung-Hsing Univ., Taichung, Taiwan ; Ren-Bo Huang ; Wei-Yuan Cheng

This paper proposes an interval type-2 fuzzy-neural network with support-vector regression (IT2FNN-SVR) for noisy regression problems. The antecedent part in each fuzzy rule of an IT2FNN-SVR uses interval type-2 fuzzy sets, and the consequent part is of the Takagi-Sugeno-Kang (TSK) type. The use of interval type-2 fuzzy sets helps improve the network's noise resistance. The network inputs may be numerical values or type-1 fuzzy sets, with the latter being used for further improvements in robustness. IT2FNN-SVR learning consists of both structure learning and parameter learning. The structure-learning algorithm is responsible for online rule generation. The parameters are optimized for structural-risk minimization using a two-phase linear SVR algorithm in order to endow the network with high generalization ability. IT2FNN-SVR performance is verified through comparisons with type-1 and type-2 fuzzy-logic systems and other regression models on noisy regression problems.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 4 )