Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Online Adaptive Estimation of Sparse Signals: Where RLS Meets the \ell _1 -Norm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Angelosante, D. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Bazerque, J.A. ; Giannakis, G.B.

Using the 1-norm to regularize the least-squares criterion, the batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications where observations adhere to parsimonious linear regression models. To cope with high complexity, increasing memory requirements, and lack of tracking capability that batch Lasso estimators face when processing observations sequentially, the present paper develops a novel time-weighted Lasso (TWL) approach. Performance analysis reveals that TWL cannot estimate consistently the desired signal support without compromising rate of convergence. This motivates the development of a time- and norm-weighted Lasso (TNWL) scheme with 1-norm weights obtained from the recursive least-squares (RLS) algorithm. The resultant algorithm consistently estimates the support of sparse signals without reducing the convergence rate. To cope with sparsity-aware recursive real-time processing, novel adaptive algorithms are also developed to enable online coordinate descent solvers of TWL and TNWL that provably converge to the true sparse signal in the time-invariant case. Simulated tests compare competing alternatives and corroborate the performance of the novel algorithms in estimating time-invariant signals, and tracking time-varying signals under sparsity constraints.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 7 )