By Topic

Optimal Arrival Flight Sequencing and Scheduling Using Discrete Airborne Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yeonju Eun ; Korea Aerosp. Res. Inst., Daejeon, South Korea ; Inseok Hwang ; Hyochoong Bang

An algorithm for optimal arrival flight sequencing and spacing in a near-terminal area is proposed. The optimization problem and algorithm proposed in this paper are developed for a decision-support tool for air-traffic control, which uses discrete delay times as optimization variables. The algorithm is applicable to various scenarios with situational and operational constraints such as maximum position shift (MPS) constraints or different sets of discrete delay times, depending on aircraft types or approaching routes. The proposed algorithm is based on a branch-and-bound algorithm with linear programming (LP) and Lagrangian dual decomposition. We formulate the sequencing and scheduling problem as LP with linear matrix inequalities (LMIs), which allows computing the lower bound of the cost for the best first search in the branch-and-bound algorithm and propose Lagrangian dual decomposition for computational efficiency. The proposed algorithm is analyzed and validated through illustrative air-traffic scenarios with various operational constraints, and the simulation results show that the computation time can be significantly reduced using the proposed Lagrangian dual-decomposition method.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:11 ,  Issue: 2 )