By Topic

Practical Timing and Frequency Synchronization for OFDM-Based Cooperative Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qinfei Huang ; Sch. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China ; Ghogho, M. ; Jibo Wei ; Ciblat, P.

In this paper, we investigate the timing and carrier frequency offset (CFO) synchronization problem in decode and forward cooperative systems operating over frequency selective channels. A training sequence which consists of one orthogonal frequency-division multiplexing (OFDM) block having a tile structure in the frequency domain is proposed to perform synchronization. Timing offsets are estimated using correlation-type algorithms. By inserting some null subcarriers in the proposed tile structure, we propose a computationally efficient subspace decomposition-based algorithm for CFO estimation. The issue of optimal tile length is studied both theoretically and through simulations. By judiciously designing the tile size of the pilot, the proposed algorithms are shown to have better performance, in terms of synchronization errors and bit error rate, than the time-division multiplexing-based training method and the computationally demanding space-alternating generalized expectation-maximization algorithm.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 7 )