Cart (Loading....) | Create Account
Close category search window
 

Coupled Transient Finite Element Simulation of Quench in Jefferson Lab's 11 GeV Super High Momentum Spectrometer Superconducting Magnets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sun, E. ; Thomas Jefferson Nat. Accel. Facility, Newport News, VA, USA ; Brindza, P. ; Lassiter, S. ; Fowler, M.
more authors

This paper presents coupled transient thermal and electromagnetic finite element analysis of quench in the Q2, Q3, and dipole superconducting magnets using Vector Fields Quench code. Detailed temperature distribution within coils and aluminum force collars were computed at each time step. Both normal (quench with dump resistor) and worst-case (quench without dump resistor) scenarios were simulated to investigate the maximum temperatures. Two simulation methods were utilized, and their algorithms, implementation, advantages, and disadvantages are discussed. The first method simulated the coil using nonlinear transient thermal analysis directly linked with the transient circuit analysis. It was faster because only the coil was meshed and no eddy current was modeled. The second method simulated the whole magnet including the coil, the force collar, and the iron yoke. It coupled thermal analysis with transient electromagnetic field analysis which modeled electromagnetic fields including eddy currents within the force collar. Since eddy currents and temperature in the force collars were calculated in various configurations, segmentation of the force collars was optimized under the condition of fast discharge.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:20 ,  Issue: 3 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.