By Topic

Signal-Dependent Variable-Resolution Clockless A/D Conversion With Application to Continuous-Time Digital Signal Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mariya Kurchuk ; Columbia University, New York, NY, USA ; Yannis Tsividis

A variable-resolution (VR) quantizer with input-activity-dependent adjustable resolution is presented. Several potential schemes are discussed; the favored scheme achieves adjustable resolution by level skipping according to the speed of the input. The advantages of a VR analog-to-digital conversion (ADC) are presented with applications in continuous-time (CT) digital signal processing systems. It is shown that a decrease in resolution for fast inputs does not corrupt the in-band spectrum while leading to a reduction in the number of samples produced by a CT ADC. The result is a significant decrease in power dissipation but without in-band performance degradation. Analysis and extensive simulations are provided. Simulations using signals in the voice band show that a power reduction of over 80% is achievable with a VR quantization.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:57 ,  Issue: 5 )