Cart (Loading....) | Create Account
Close category search window
 

Detection of Gaussian constellations in MIMO systems under imperfect CSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nevat, I. ; Sch. of Electr. Eng. & Telecommun., Univ. of NSW, Sydney, NSW, Australia ; Peters, G.W. ; Jinhong Yuan

This paper considers the problem of Gaussian symbols detection in MIMO systems in the presence of channel estimation errors. Under this framework we develop a computationally efficient approximations of the MAP detector. The new detectors are based on a relaxation of the discrete nature of the digital constellation and on the channel estimation error statistics. This leads to a non-convex program that is solved efficiently via a hidden convexity minimization approach. Additionally, we show that using a Bayesian EM approach, comparable BER performance to that of the MAP detector can be achieved. Next we extend the detection scheme to the case where the noise variance is unknown. We present a modified Bayesian EM approach with annealed Gibbs sampling to perform joint noise variance estimation and symbols detection. Simulation results in a random MIMO system show that the proposed algorithm outperforms the linear MMSE receiver in terms of BER.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.