By Topic

Achievable information rates for channels with insertions, deletions, and intersymbol interference with i.i.d. inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Hu ; Qualcomm Inc., San Diego, CA, 92121, USA ; Tolga M. Duman ; M. Fatih Erden ; Aleksandar Kavcic

We propose to use various trellis structures to characterize different types of insertion and deletion channels. We start with binary independent and identically distributed (i.i.d.) insertion or deletion channels, propose a trellis representation and develop a simulation based algorithm to estimate the corresponding information rates with independent and uniformly distributed inputs. This approach is then generalized to other cases, including channels with additive white Gaussian noise, channels with both insertions and deletions, and channels with intersymbol interference (ISI) where the latter model is motivated by the recent developments on bit-patterned media recording. We demonstrate that the proposed algorithm is an efficient and flexible technique to closely estimate the achievable information rates for channels with insertions and/or deletions with or without intersymbol interference when i.i.d. inputs are employed while we also provide some notes on the achievable information rates when Markov inputs are used. We emphasize that our method is useful for evaluating information rates for channels with insertion/deletions with additional impairments where there does not seem to be a hope of obtaining fully analytical results.

Published in:

IEEE Transactions on Communications  (Volume:58 ,  Issue: 4 )