By Topic

Minimum distance computation of LDPC codes using a branch and cut algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keha, A. ; Ind. Eng. Dept., Arizona State Univ., Tempe, AZ, USA ; Duman, T.M.

We give a branch-and-cut algorithm for finding the minimum distance of a binary linear block code. We give two integer programming (IP) models and study the convex hull of the single constraint relaxation of these IP models. We use the new inequalities as cuts in a branch-and-cut scheme. Finally, we report computational results based on turbo and low density parity check (LDPC) codes that demonstrate the effectiveness of our cuts. We demonstrate that our IP formulation and specific cuts are efficient tools for determining the minimum distance of moderate size linear block codes, specifically, they are very efficient for LDPC codes, and provide us with an additional tool for solving this important problem.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 4 )