Cart (Loading....) | Create Account
Close category search window

On the Complexity of Discrete Feature Selection for Optimal Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peña, J.M. ; Dept. of Comput. & Inf. Sci., Linkoping Univ., Linkoping, Sweden ; Nilsson, R.

Consider a classification problem involving only discrete features that are represented as random variables with some prescribed discrete sample space. In this paper, we study the complexity of two feature selection problems. The first problem consists in finding a feature subset of a given size k that has minimal Bayes risk. We show that for any increasing ordering of the Bayes risks of the feature subsets (consistent with an obvious monotonicity constraint), there exists a probability distribution that exhibits that ordering. This implies that solving the first problem requires an exhaustive search over the feature subsets of size k. The second problem consists of finding the minimal feature subset that has minimal Bayes risk. In the light of the complexity of the first problem, one may think that solving the second problem requires an exhaustive search over all of the feature subsets. We show that, under mild assumptions, this is not true. We also study the practical implications of our solutions to the second problem.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.