By Topic

Architecture Exploration of High-Performance PCs with a Solid-State Disk

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dong Kim ; Flash Solution R&D Center, Samsung Electron. Co., Hwasung, South Korea ; Kwanhu Bang ; Seung-Hwan Ha ; Sungroh Yoon
more authors

As the cost per bit of NAND flash memory devices rapidly decreases, NAND-flash-based Solid-State Disks (SSDs) are replacing Hard Disk Drives (HDDs) used in a wide spectrum of consumer computing devices. Although typical SSDs can deliver higher performances than HDDs can, the full capabilities of SSDs are currently not exploited in most systems. This is because an SSD is interfaced with its host system using the architectures and interface protocols designed for HDDs, due to compatibility issues. Given the pace at which the stand-alone performance of SSDs improves, the performance loss of SSDs due to the legacy interface and system architecture will soon become intolerable. To address this issue, we propose several architectural choices to fully exploit the performance of SSDs used in consumer PC architectures. More specifically, we explore its interface scheme, and data transfer concurrency with the change of the conventional PC architecture if necessary. We evaluated the performance of the architectural choices by prototyping them with SystemC. The experimental results guide us how to trade off the performance enhancement and the change of the PC architecture. The performance improvement was maximized by 2.67 times when the PC architecture is changed to support a dual-port SSD connected to the North Bridge via the Double-Data Rate (DDR) interface in real trace environments.

Published in:

Computers, IEEE Transactions on  (Volume:59 ,  Issue: 7 )