By Topic

Disturbance Analysis of Nonlinear Differential Equation Models of Genetic SUM Regulatory Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ping Li ; Dept. of Mech. Eng., Univ. of Hong Kong, Hong Kong, China ; Lam, J.

Noise disturbances and time delays are frequently met in cellular genetic regulatory systems. This paper is concerned with the disturbance analysis of a class of genetic regulatory networks described by nonlinear differential equation models. The mechanisms of genetic regulatory networks to amplify (attenuate) external disturbance are explored, and a simple measure of the amplification (attenuation) level is developed from a nonlinear robust control point of view. It should be noted that the conditions used to measure the disturbance level are delay-independent or delay-dependent, and are expressed within the framework of linear matrix inequalities, which can be characterized as convex optimization, and computed by the interior-point algorithm easily. Finally, by the proposed method, a numerical example is provided to illustrate how to measure the attenuation of proteins in the presence of external disturbances.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 1 )