Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

High-Sensitivity Software-Configurable 5.8-GHz Radar Sensor Receiver Chip in 0.13- \mu m CMOS for Noncontact Vital Sign Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, analyses on sensitivity and link budget have been presented to guide the design of high-sensitivity noncontact vital sign detector. Important design issues such as flicker noise, baseband bandwidth, and gain budget have been discussed with practical considerations of analog-to-digital interface and signal processing methods in noncontact vital sign detection. Based on the analyses, a direct-conversion 5.8-GHz radar sensor chip with 1-GHz bandwidth was designed and fabricated. This radar sensor chip is software configurable to set the operation point and detection range for optimal performance. It integrates all the analog functions on-chip so that the output can be directly sampled for digital signal processing. Measurement results show that the fabricated chip has a sensitivity of better than -101 dBm for ideal detection in the absence of random body movement. Experiments have been performed successfully in laboratory environment to detect the vital signs of human subjects.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 5 )