By Topic

Definition of ICESat Selection Criteria for Their Use as Height References for TanDEM-X

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jaime Hueso Gonzalez ; Microwaves and Radar Institute, German Aerospace Center (DLR) , Wessling, Germany ; Markus Bachmann ; Rolf Scheiber ; Gerhard Krieger

The TanDEM-X satellite synthetic aperture radar (SAR) mission, which is the result of the partnership between the German Aerospace Center (DLR) and Astrium GmbH, has the goal to deliver a high-precision global digital elevation model (DEM). The X-band SAR interferometry-derived DEMs contain absolute and relative height errors that have to be minimized with the help of height references in order to achieve the specified accuracies. ICESat laser altimetry data are suited for this task, due to their accuracy and global distribution. In order to gain experience in the comparison between a radar-derived DEM and ICESat GLA14 elevation data, an X-band DEM was acquired over a test region with the experimental airborne radar system of DLR in Oberpfaffenhofen. Additionally, a laser DEM of the area was used to verify the height accuracy claimed by previously published ICESat studies over different terrain types and after applying different selection threshold criteria. The analyses described in this paper are the basis for the definition of a suitable global ICESat selection strategy and include the computation of the density of selected ICESat samples over the Earth. These aspects are crucial for a successful TanDEM-X DEM generation.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:48 ,  Issue: 6 )