Cart (Loading....) | Create Account
Close category search window
 

Quality-Based Score Normalization With Device Qualitative Information for Multimodal Biometric Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Poh, N. ; Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK ; Kittler, J. ; Bourlai, T.

As biometric technology is rolled out on a larger scale, it will be a common scenario (known as cross-device matching) to have a template acquired by one biometric device used by another during testing. This requires a biometric system to work with different acquisition devices, an issue known as device interoperability. We further distinguish two subproblems, depending on whether the device identity is known or unknown. In the latter case, we show that the device information can be probabilistically inferred given quality measures (e.g., image resolution) derived from the raw biometric data. By keeping the template unchanged, cross-device matching can result in significant degradation in performance. We propose to minimize this degradation by using device-specific quality-dependent score normalization. In the context of fusion, after having normalized each device output independently, these outputs can be combined using the naive Bayes principal. We have compared and categorized several state-of-the-art quality-based score normalization procedures, depending on how the relationship between quality measures and score is modeled, as follows: 1) direct modeling; 2) modeling via the cluster index of quality measures; and 3) extending 2) to further include the device information (device-specific cluster index). Experimental results carried out on the Biosecure DS2 data set show that the last approach can reduce both false acceptance and false rejection rates simultaneously. Furthermore, the compounded effect of normalizing each system individually in multimodal fusion is a significant improvement in performance over the baseline fusion (without using any quality information) when the device information is given.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:40 ,  Issue: 3 )
Biometrics Compendium, IEEE

Date of Publication:

May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.