By Topic

Accurate Amplitude Estimation of Harmonic Components of Incoherently Sampled Signals in the Frequency Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Belega, D. ; Fac. of Electron. & Telecommun., Politeh. Univ. of Timisoara, Timisoara, Romania ; Dallet, D. ; Slepicka, D.

This paper focuses on estimating the amplitude of harmonic components of a harmonically distorted sine wave by the interpolated discrete Fourier transform (IpDFT) method with maximum sidelobe decay windows. The expression of the maximum of the interference error caused by the fundamental sine-wave component on the amplitude estimation of harmonic components is derived. In addition, for a signal corrupted by stationary white noise, the statistical efficiency of the IpDFT method is investigated with respect to the single-tone unbiased Crame??r-Rao lower bound (CRLB). Based on the derived expressions, a constraint is derived ensuring that interference from the fundamental component could practically be neglected. Finally, the performance of the IpDFT method is compared with that of the energy-based method on the basis of theoretical, simulation, and experimental results and with that of a state-of-the-art method according to simulation and experimental results.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 5 )