Cart (Loading....) | Create Account
Close category search window

Fabrication and Characterization of the Capillary Performance of Superhydrophilic Cu Micropost Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Youngsuk Nam ; Mech. & Aerosp. Eng. Dept., Univ. of California, Los Angeles, CA, USA ; Sharratt, S. ; Byon, C. ; Kim, Sung Jin
more authors

We report the fabrication of dense arrays of super-hydrophilic Cu microposts at solid fractions as high as 58% and aspect ratios as high as four using electrochemical deposition and chemical oxidation techniques. Oxygen surface plasma treatments of photoresist molds and a precise control of the initial electrodeposition current are found to be critical in creating arrays of nearly defect-free Cu posts. The capillary performance of the micropost arrays is characterized using capillary rate of rise experiments and numerical simulations that account for the finite curvatures of liquid menisci. For the given wick morphology, the capillary performance generally decreases with increasing solid fraction and is enhanced by almost an order of magnitude when thin nanostructured copper oxide layers are formed on the post surface. The present work provides a useful starting point to achieve optimal balance between the capillary performance and the effective thermal conductivity of advanced wicks for micro heat pipes.

Published in:

Microelectromechanical Systems, Journal of  (Volume:19 ,  Issue: 3 )

Date of Publication:

June 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.