Cart (Loading....) | Create Account
Close category search window
 

Corona Charging and Current Measurement Using Phi-Type Corona Electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sugimoto, T. ; Dept. of Electr. Eng., Yamagata Univ., Yonezawa, Japan ; Ishii, H. ; Higashiyama, Y.

In order to develop a noncontact surface resistivity measurement technique, the corona charging of a test material with simultaneous measurement of an induction current caused by a traveling surface charge was investigated using phi-type electrodes. The phi-type electrode consists of a high-voltage needle electrode that penetrates a circular hole of a grounded planar electrode. The phi-type electrode is positioned above an electrically isolated test material. The purpose of the electrode design is to supply static charge to the test surface, to produce a ground potential close to the charged test material, and then to measure the induction current or the surface potential caused by the propagated surface charge. Test materials with surface resistivities from 106 to 1012 Ω/□ were prepared by coating conductive polymer layers onto polyvinyl chloride disks. Two setups were prepared for higher surface resistivity (Model H) and lower surface resistivity (Model L). For Model H, a surface voltmeter was used to measure the slow propagation of surface charge. The rise time of the surface potential increased linearly with the surface resistivity from 3 × 109 to 1 × 1012 Ω/□. The Model L had two induction probes to measure the fast propagation of surface charge. The rate of the total induction charges was a function of the surface resistivity from 3 × 106 to 3 × 109 Ω/□. Experimental results obtained from both the H and L models agreed with the predicted results. The phi-type electrode was verified as effective for noncontact surface charge measurements.

Published in:

Industry Applications, IEEE Transactions on  (Volume:46 ,  Issue: 3 )

Date of Publication:

May-june 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.