By Topic

Nonlinear clutter cancellation and detection using a memory-based predictor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Leung, H. ; Sect. of Surface Radar, Defence Res. Establ. Ottawa, Ont., Canada

In this paper, a nonlinear prediction (NLP) method is proposed as an alternative to the conventional linear prediction (LP) method for clutter cancellation. Because of the nonlinearity and non-Gaussianity of a clutter process, a nonlinear predictor is therefore needed to suppress clutter optimally. A memory-based predictor which uses a table look-up strategy to perform NLP is used in this work. The advantages of the memory-based approach are fast learning, algorithmic simplicity, robustness and suitability for parallel implementation. The memory-based predictor is then used as an adaptive detector for small surface target detection embedded in clutter. The effectiveness of the new method is demonstrated using real sea clutter data, and the results show improvement when compared with the conventional LP techniques

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:32 ,  Issue: 4 )