By Topic

Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sundstrom, L. ; Dept. of Appl. Electron., Lund Univ., Sweden ; Faulkner, M. ; Johansson, M.

Significant improvements in terms of reduced power consumption and increased bandwidth are obtained if a digital predistortion linearizer is implemented with an application specific digital signal processor. This paper investigates the quantization effects in different parts of a table based complex gain predistortion linearizer. The analysis can be used to optimize the predistortion linearizer with respect to word length based on the knowledge of the RF amplifier gain characteristic, the probability density function for the modulation scheme and the maximum allowable adjacent channel interference level. A predistorter chip is described that has been designed using the analysis. The chip has been fabricated and tested. Compared with a standard digital signal processing (DSP) solution it provides seven times higher bandwidth but consumes only 10% of the power

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:45 ,  Issue: 4 )