By Topic

Classification of Normal and Hypoxic Fetuses From Systems Modeling of Intrapartum Cardiotocography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Warrick, P.A. ; Biomed. Eng. Dept., McGill Univ., Montreal, QC, Canada ; Hamilton, E.F. ; Precup, D. ; Kearney, R.E.

Recording of maternal uterine pressure (UP) and fetal heart rate (FHR) during labor and delivery is a procedure referred to as cardiotocography. We modeled this signal pair as an input-output system using a system identification approach to estimate their dynamic relation in terms of an impulse response function. We also modeled FHR baseline with a linear fit and FHR variability unrelated to UP using the power spectral density, computed from an auto-regressive model. Using a perinatal database of normal and pathological cases, we trained suport-vector-machine classifiers with feature sets from these models. We used the classification in a detection process. We obtained the best results with a detector that combined the decisions of classifiers using both feature sets. It detected half of the pathological cases, with very few false positives (7.5%), 1 h and 40 min before delivery. This would leave sufficient time for an appropriate clinical response. These results clearly demonstrate the utility of our method for the early detection of cases needing clinical intervention.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 4 )